Geometric Random Variable: 7 Important Characteristics

Some additional discrete random variable and its parameters

    The discrete random variable with its probability mass function combines the distribution of the probability and depending on the nature of the discrete random variable the probability distribution may have different names like binomial distribution, Poisson distribution etc., as already we has seen the types of discrete random variable, binomial random variable and Poisson random variable with the statistical parameters for these random variables. Most of the random variables are characterized depending on the nature of probability mass function, now we will see some more type of discrete random variables and its statistical parameters.

Geometric Random variable and its distribution

      A geometric random variable is the random variable which is assigned for the independent trials performed till the occurrence of success after continuous failure i.e if we perform an experiment n times and getting initially all failures n-1 times and then at the last we get success.  The probability mass function for such a discrete random variable will be

image 32

In this random variable the necessary condition for the outcome of the independent trial is the initial all the result must be failure before success.

Thus in brief the random variable which follows above probability mass function is known as geometric random variable.

It is easily observed that the sum of such probabilities will be 1 as the case for the probability.

image 33

Thus the geometric random variable with such probability mass function is geometric distribution.

Know more about Continuous random variable

Expectation of Geometric random variable

    As expectation is one of the important parameter for the random variable so the expectation for the geometric random variable will be 

E[X]=1/p

where p is the probability of success.

since

image 34

let the probability of failure be q=1-p

so

image 36
image 37
image 40
image 39
image 45

E[X]=qE[X]+1

(1-q)E[X]=1

pE[X]=1

thus we get

image 46

Thus the expected value or mean of the given information we can follow by just inverse value of probability of success in geometric random variable.

To get details about Normal Random Variable

Variance and standard deviation of the geometric random variable

In similar way we can obtain the other important statistical parameter variance and standard deviation for the geometric random variable and it would be

image 47

and

image 48

To obtain these values we use the relation

image 49

So let us calculate first

E[X2]

set q=1-p

image 50
image 51

so

image 52
image 53
image 54
image 55
image 56
image 57

thus we have

01.PNG 1

Negative Binomial Random Variable

    This random falls in another discrete random variable because of the nature of its probability mass function, in the negative binomial random variable and in its distribution from n trial of an independent experiment r successes must be obtained initially

2.PNG

In other words a random variable with above probability mass function is negative binomial random variable with parameters (r,p), note that if we restrict r=1 the negative binomial distribution turns to geometric distribution, we can specifically check

3.PNG

Expectation, Variance and standard deviation of the negative binomial random variable

The expectation and variance for the negative binomial random variable will be

4.PNG

with the help of probability mass function of negative binomial random variable and definition of expectation we can write

5.PNG

here Y is nothing but the negative binomial random variable now put k=1 we will get

6.PNG

Thus for variance

Exxample: If a die is throw to get 5 on the face of die till we get 4 times this value find the expectation and variance.Sine the random variable associated with this independent experiment is negative binomial random variable for r=4 and probability of success p=1/6 to get 5 in one throw

as we know for negative binomial random variable 

7.PNG

Hypergeometric random variable

       If we particularly choosing a sample of size n from a total N having m and N-m two types then the random variable for first was selected have the probability mass function as

10.PNG 1

for example suppose we have a sack from which a sample of size n books taken randomly without replacement containing N books of which m are mathematics and N-m are physics, If we assign the random variable to denote the number of mathematics books selected then the probability mass function for such selection will be as per above probability mass function.

  In other words the random variable with the above probability mass function is known to be the hypergeometric random variable.

Read more about Jointly Distributed Random Variables

Example: From a lot of some electronic components if 30% of the lots have four defective components and 70% have one defective, provided size of lot is 10 and to accept the lot three random components will be chosen and checked if all are non-defective then lot will be selected. Calculate that from the total lot what percent of lot get rejected.

here consider A is the event to accept the lot

11.PNG 1

N=10, m=4, n=3

13.PNG 1

for N=10, m=1, n=3

12.PNG 1

Thus the 46% lot will be rejected.

Expectation, Variance and standard deviation of the hypergeometric random variable

    The expectation, variance and standard deviation for the hypergeometric random variable with parameters n,m, and N would be

14.PNG 1

or  for the large value of N

15.PNG 1

and standard deviation is the square root of the variance.

By considering the definition of probability mass function of hypergeormetric function and the expectation we can write it as

16.PNG 2

here by using the relations and identities of the combinations we have

17.PNG 1

here Y plays the role of hypergeometric random variable with respective parameters now if we put k=1 we will get

E[X] = nm/N

and for k=2

image 62

so variance would be

image 61

for p=m/N and

image 60

we get

image 59

for very large value of N it would obviously

image 58

Zeta (Zipf) random variable

        A discrete random variable is said to be Zeta if its probability mass function is given by

image 42

for the positive values of alpha.

In the similar way we can find the values of the expectation, variance and standard deviation.

     In the similar way by using just the definition of the probability mass function and the mathematical expectation we can summarize the number of properties for the each of discrete random variable for example expected values of sums of random variables as

For random variables

$ X1,X2, X3…$

image 41

Conclusion:

   In this article we mainly focused on some additional discrete random variable, its probability mass functions, distribution and the statistical parameters mean or expectation, standard deviation and variance,  The brief introduction and simple example we discussed to give just the idea the detail study remains to discuss In the next articles we will move on continuous random variables and concepts related to continuous random variable ,if you want further reading then go through suggested link below. For more topics on mathematics, please this link.

Schaum’s Outlines of Probability and Statistics

https://en.wikipedia.org/wiki/Probability